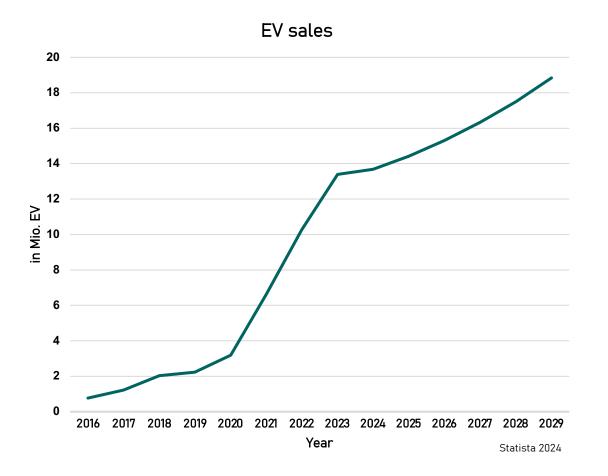
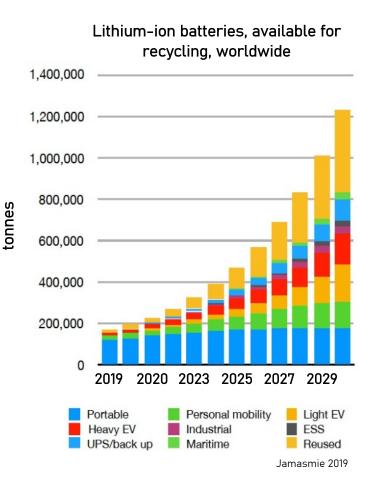


UNA

A meta-analysis of the degradation rate of lithiumion batteries


Matteo Ligorati Jerome Geyer-Klingenberg Andreas Rathgeber


Work in progress paper

MAER-Net 2024, Augsburg, Germany

Introduction

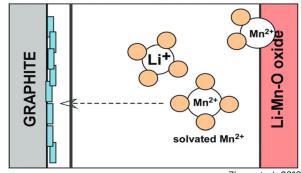
High demand for lithium-ion batteries

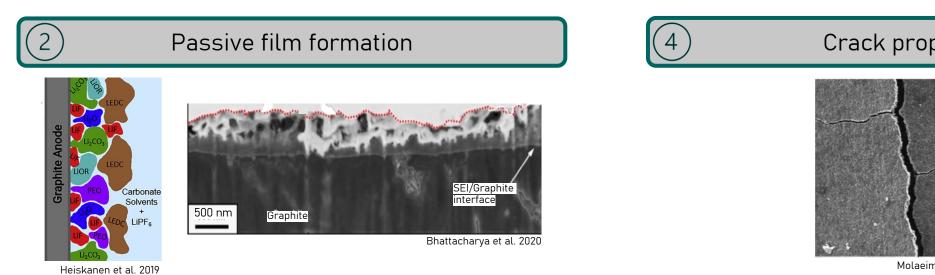


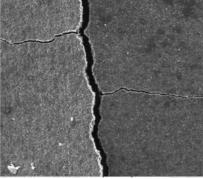
wir

Degradation of Lithium-Ion Batteries

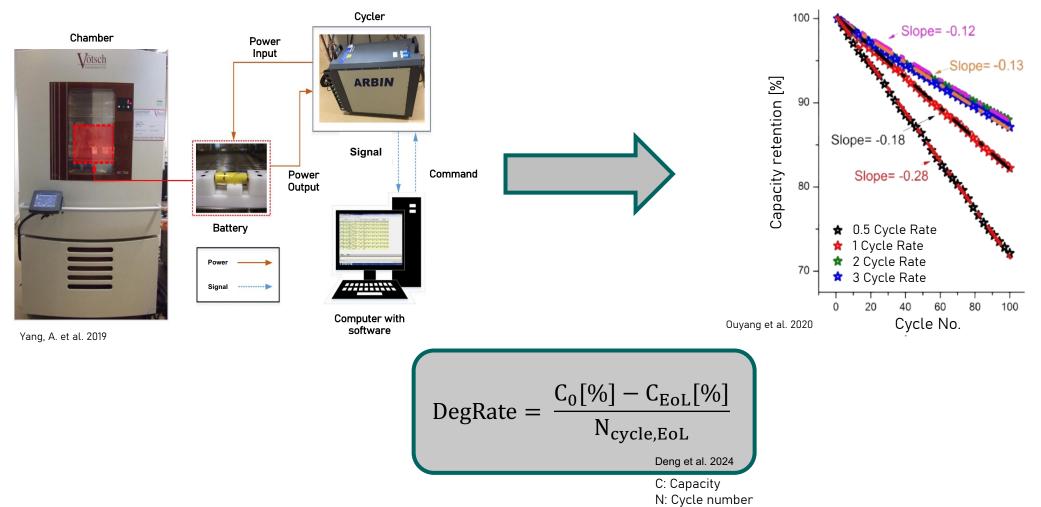
Most important factors influencing battery degradation


Li plating


Edge et al. 2021


Active material dissolution

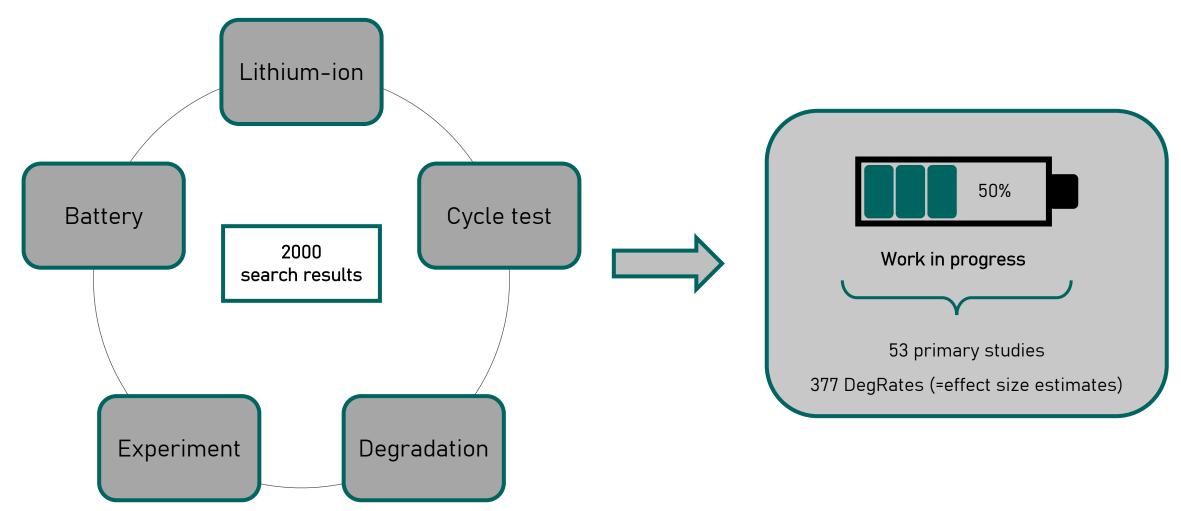
Zhan et al. 2018


Crack propagation

Molaeimanesh et al. 2018

Battery Degradation Rate

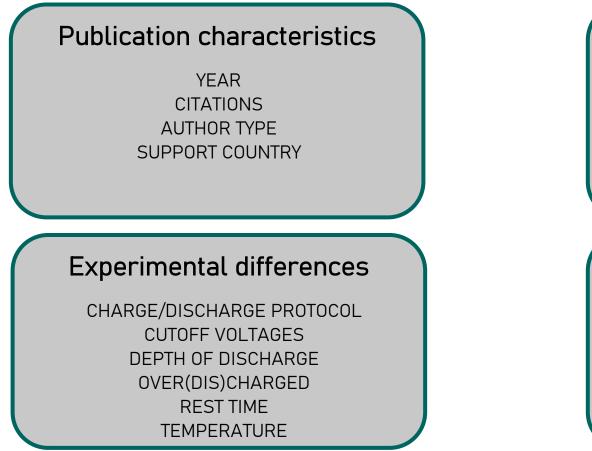
Experimental setup and degradation rate



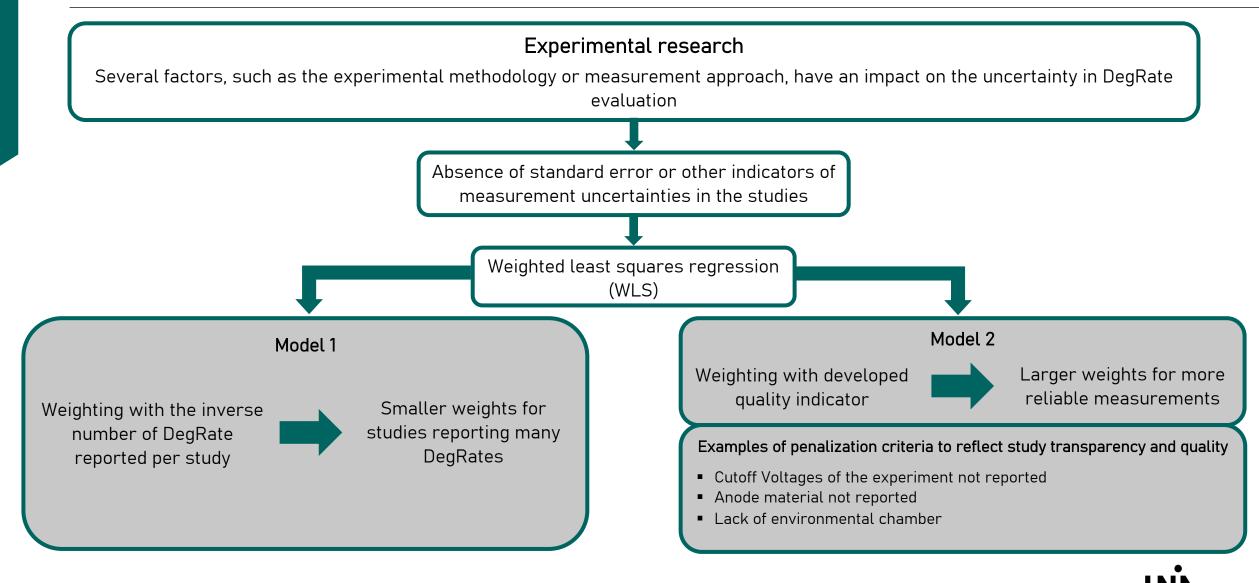
WD

4 10/13/24 | Universität Augsburg

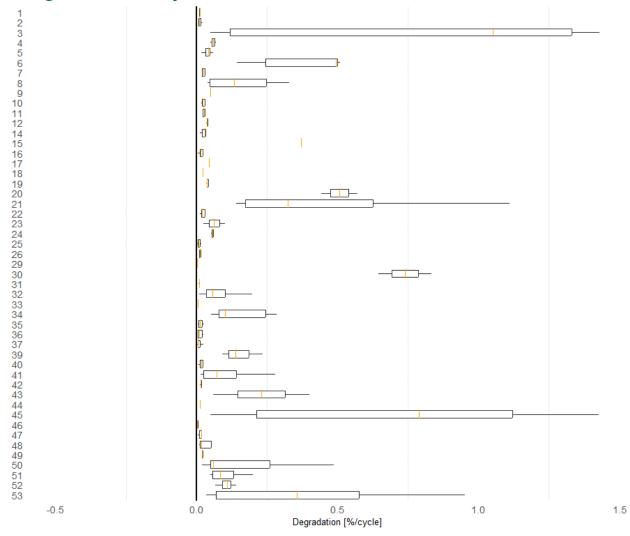
Literature research


Study selection

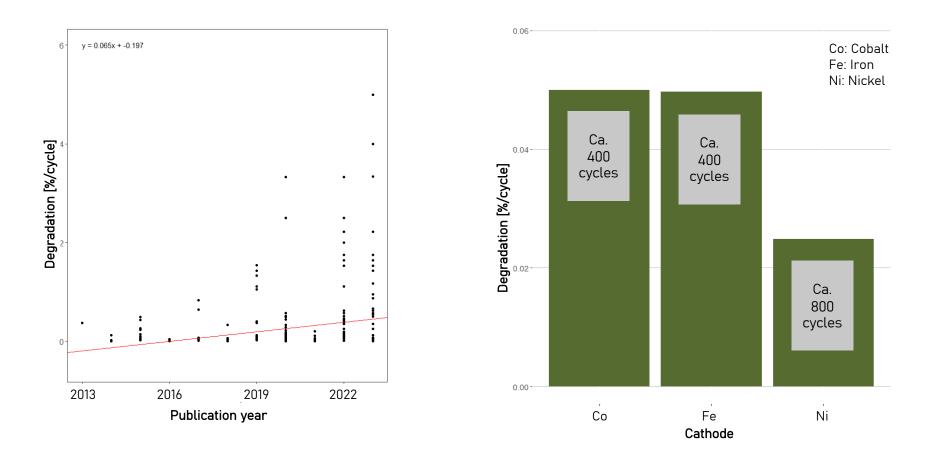
W


Methodological setup

Moderator variables



Methodological setup



DegRates vary across studies

- Studies that cycled batteries at varying temperatures were excluded due to small number of cases
- For clear scaling, the x-axis was limited to 1.5, although studies report degradation over 5 %/cycle

Descriptives

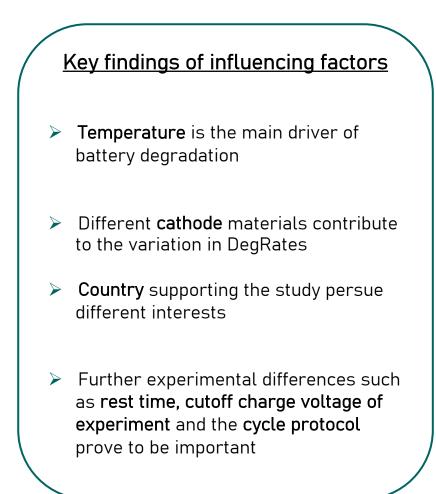
MN

BMA

CONTROL VARIABLE: DECELERATED CURVE BATTERY: CATHODE FE EXPERIMENT: TEMP LOW EXPERIMENT: CYCLED TILL EOL EXPERIMENT: REST TIME EXPERIMENT: CHARGE CUTOFF VOLTAGE EXPERIMENT: OTHER CYCLE PROTOCOLLS PUBLICATION: EUROPE EXPERIMENT: CHARGE RATE EXPERIMENT: CUTOFF CHAREG AMPERE PUBLICATION: CITS EXPERIMENT: DOD EXPERIMENT: DISCHARGE RATE PUBLICATION: YEAR EXPERIMENT: CCCV BATTERY: CATHODE MO PUBLICATION: ASIA MEASUREMENT: RPT PUBLICATION: #AUTHOR PUBLICATION: NORTH AMERICA BATTERY: NOMINAL CAPACITY BATTERY: CATHODE CO MEASUREMENT: KNOWN DEFECT CONTROL VARIABLE: ACCELERATED CURVE **EXPERIMENT: TEMP HIGH**

0

01


0.22 0.35 0.47

08

07

0.6

09

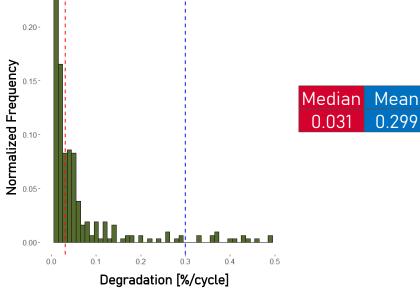
Regression

	WLS MRA		BMA	
33 Studies / 240 observations	Model 1	Model 2	PIP	
Moderator variable				
INTERCEPT	-1.710*	-2.259***	1	
Publication characteristics				
PUBLICATION: YEAR	0.084**	0.096*	0.158	
PUBLICATION: EUROPE ¹	-0.341	-0.537***	0.903	
PUBLICATION: NORTH AMERICA ¹	0.071	0.360	0.067	
PUBLICATION: ASIA ¹	-0.131	0.043	0.116	
PUBLICATION: CITS	-0.851	-0.361	0.514	
PUBLICATION: #AUTHOR	-0.005	0.019	0.070	
Battery differences				
BATTERY: NOMINAL CAPACITY	-0.008*	-0.006	0.065	
BATTERY: CATHODE CO ²	0.060	0.042	0.064	
BATTERY: CATHODE FE ²	-0.451	-1.171***	1	
BATTERY: CATHODE MO ²	0.892**	1.254**	0.123	
Measurement characteristics				
MEASUREMENT: RPT	-0.104	-0.068	0.105	
MEASUREMENT: KNOWN DEFECT	-0.009	-0.204	0.059	

	WLS	MRA	BMA
33 Studies / 240 observations	Model 1	Model 2	PIP
Moderator variable			
Experimental differences			
EXPERIMENT: CHARGE RATE	0.072	0.408	0.865
EXPERIMENT: DISCHARGE RATE	-0.013	-0.119	0.250
EXPERIMENT: CUTOFF CHAREG AMPERE	-0.109	-0.246	0.514
EXPERIMENT: DOD	0.184	0.134	0.426
EXPERIMENT: CYCLED TILL EOL	0.287*	0.508***	0.997
EXPERIMENT: CHARGE CUTOFF VOLTAGE	0.063**	0.130***	0.985
EXPERIMENT: OTHER CYCLE PROTOCOLS ⁴	0.442	1.814***	0.961
EXPERIMENT: CCCV ⁴	-0.157	0.002	0.129
EXPERIMENT: REST TIME	-0.217*	-0.563**	0.988
EXPERIMENT: TEMP LOW ³	1.198***	2.110***	1
EXPERIMENT: TEMP HIGH ³	-0.025	-0.032	0.054
Control variables			
CONTROL VARIABLE: DECELERATED CURVE⁵	0.226	0.828**	1
CONTROL VARIABLE: ACCELERATED CURVE⁵	0.065	0.031	0.056

Note: Regression coefficients of the moderator variables. Standard errors of the regression coefficients are clustered at the level of the individual studies to accommodate within-study dependencies. ***, ** and * denote significance at the 1%, 5% and 10% level. Base groups of the dummy variables: ¹ none, ² Cathode Nickel, ³ Temperature moderate, ⁴ CC Charge/Discharge, ⁵ linear curve

Conclusion


- Key findings
 - > Experimental differences, especially temperature, drive battery degradation
 - > Different cathode materials contribute to the variation in DegRates
 - > The country supporting the study has an significant influence
- Prediction of european car driven in the winter

	Quality indicator	Average european car
Cycles	0.021 %/cycle = 952 cycles	1000 cycles
Average consumption		21 kwh/100km
range [km]		160,000 km
Lifespan [year]		10 years

Conclusion

Challenges and Outlook

- Small dataset \rightarrow coding still in progress
- Dealing with skewness

- Decelerated curve
- Publication bias
- Expand literature search beyond Google Scholar (IEEE, Scopus, other databases

Thank you for your attention!

Matteo Ligorati Applied Data Analysis University of Augsburg Matteo.ligorati@uni-a.de www.uni-augsburg.de Bhattacharya, S.; Riahi, A. R.; Alpas, A. T. (2014). Thermal cycling induced capacity enhancement of graphite anodes in lithium-ion cells. In: *Carbon* 67, 592–606.

Deng, B.; Li, W.; Cai, W.; Liu, L.; Liao, C.; Xiao, M.; Li, M. (2024). Capacity fade of high-energy Li[Ni_{0.8}Mn_{0.1}Co_{0.1}]O₂/Graphite lithium-ion battery as affected by cell mechanical constraint and subsequent stresses. In: *Journal of Cleaner Production* 448, 141722.

Edge, J. S.; O'Kane, S.; Prosser, R.; Kirkaldy, N. D.; Patel, A. N.; Hales, A.; Ghosh, A.; Ai, W.; Chen, J.; Yang, J.; Li, S.; Pang, M.-C.; Bravo Diaz, L.; Tomaszewska, A.; Marzook, M. W.; Radhakrishnan, K. N.; Wang, H.; Patel, Y.; Wu, B.; Offer, G. J. (2021). Lithium ion battery degradation: what you need to know. In: *Phys. Chem. Chem. Phys.* 23, 14, 8200–8221.

Heiskanen, S. K.; Kim, J.; Lucht, B. L. (2019). Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries. In: Joule 3, 10, 2322–2333.

Jamasmie, C. (2019). Recycled lithium batteries market to hit \$6 billion by 2030 — report. https://www.mining.com/recycled-lithium-batteries-market-to-hit-6-billion-by-2030-report/. Accessed 11 September 2024.

Molaeimanesh, G. R.; Mousavi-Khoshdel, S. M.; Nemati, A. B. (2021). Experimental analysis of commercial LiFePO4 battery life span used in electric vehicle under extremely cold and hot thermal conditions. In: *J Therm Anal Calorim* 143, 4, 3137–3146.

Ouyang, D.; Weng, J.; Chen, M.; Wang, J. (2020). Impact of high-temperature environment on the optimal cycle rate of lithium-ion battery. In: Journal of Energy Storage 28, 101242.

Statista (2024). Elektrofahrzeuge – Weltweit. https://www.mining.com/recycled-lithium-batteries-market-to-hit-6-billion-by-2030-report. Accessed 11 September 2024.

Yang, A.; Wang, Y.; Yang, F.; Wang, D.; Zi, Y.; Tsui, K. L.; Zhang, B. (2019): A comprehensive investigation of lithium-ion battery degradation performance at different discharge rates. In: *Journal of Power Sources* 443, 227108.

Zhan, C.; Wu, T.; Lu, J.; Amine, K. (2018). Dissolution, migration, and deposition of transition metal ions in Li-ion batteries exemplified by Mn-based cathodes – a critical review. In: *Energy Environ. Sci.* 11, 2, 243–257.

FURTHER SLIDES

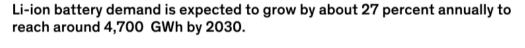
Why using Lithium-ion in battery thechnoloy

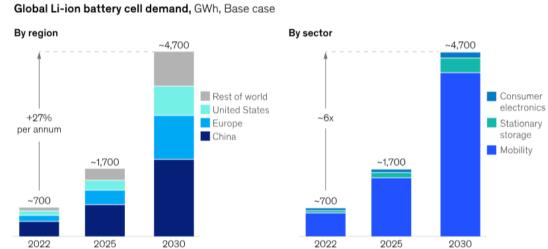
Comparison Parameter	Lead Acid	Nickel-Cadmium	Nickel Metal Hydride	Li-Ion
Compactness	-	-	-	+
Fast-charging process	+	+	+	+
Ease of disposal	+	+	+	_
Shelf life is more than 3 years	_	-	-	+
Memory effect	+	+	+	_
Permissible recharge	High	Average	Short	Very low
Depth of discharge (DOD)	50%	50-80%	50-85%	80%
Service intervals	3-6 months	30-60 days	60-90 days	Not regulated
Battery rated voltage [V]	2	1.2	1.2	3.7
Specific energy consumption [Wh/kg]	30-40	40-60	50-85	90-140
Specific power [W/kg]	180	150	250-1000	1800
Average charge time [h]	More than 10	8	6	2
Number of discharge (charge cycles)	500-800	2000	800	2000
Average self-discharge per month [%]	4	20	30	7
Average cost per kWh [\$]	150	400-800	250	450

LCO ¹ Polymer/liquid	LMO ² LFP ³ NMC ⁴ /NCA ⁵	LFP ³ NMC ⁴ /NCA ⁵	LFP ³ NMC ⁴ /NCA ⁵ LMFP ⁶ /LMNO ⁷	NMC ⁴ /NCA ⁵ LMFP ⁶ /LMNO ⁷ Sulphur	LMFP ⁶ /LMNO ⁷ Sulphur
Polymer/liquid					
	Polymer/liquid	Polymer/liquid	Polymer/liquid	Polymer/liquid Advanced liquid Semi-solid	Advanced liquid Semi-solid Solid
Graphite	Graphite	Graphite	Graphite Graphite and silicon	Graphite and silicon Lithium metal Silicon anode	Lithium metal Silicon anode
Cylindrical	Cylindrical Pouch	Prismatic Cylindrical Pouch	Prismatic Cylindrical Pouch	Cylindrical Pouch Prismatic	Cylindrical Pouch
		Cylindrical Cylindrical	Cylindrical Cylindrical Prismatic Pouch Cylindrical	Cylindrical Cylindrical Prismatic Prismatic Pouch Cylindrical Cylindrical	Graphite Graphite Graphite Graphite Graphite and silicon silicon Cylindrical Cylindrical Prismatic Cylindrical Prismatic Cylindrical Pouch

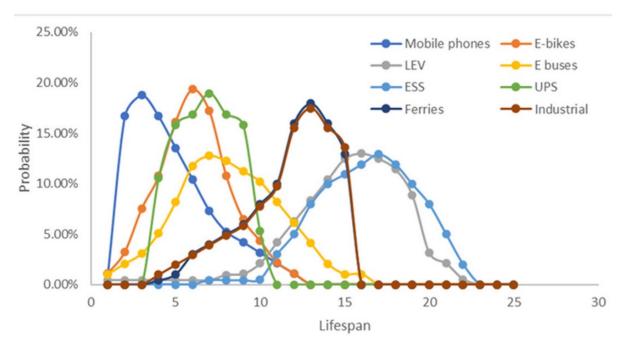
¹Lithium cobalt. ²Lithium manganese oxide. ³Lithium, iron, phosphate. ⁴Lithium, manganese cobalt.

⁶Lithium, nickel, cobalt, aluminum oxide.

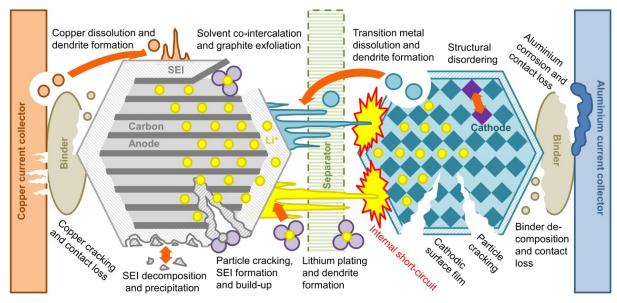

⁶Lithium manganese iron phosphate.


⁷Lithium, manganese nickel oxide. Source: McKinsey Battery Insights, 2022

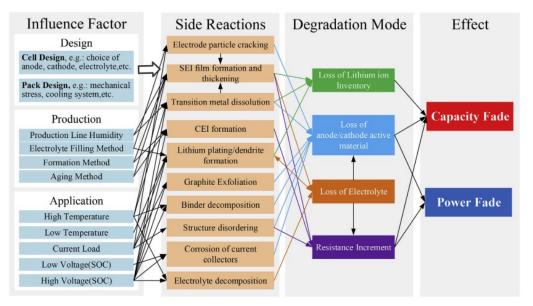
Shchurov et al. 2021


Fleischmann et al. 2023

Lifespan

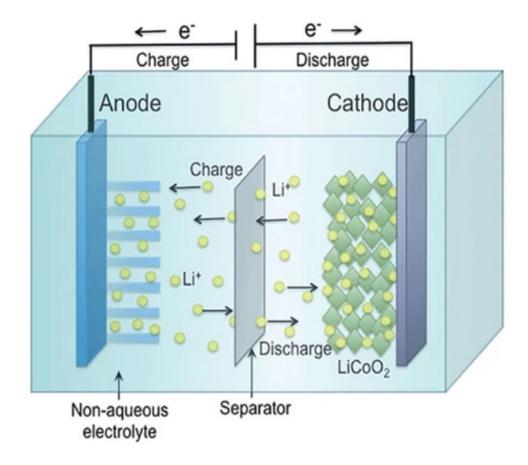


Fleischmann et al. 2023



Gaines 2023

Degradation of Lithium-Ion Batteries



Birkl et al. 2017

Han et al. 2019

Schematic diagram of the working principle of lithium-ion battery

Problem

Experimental research vs. Observational research

Experimental research

Systematic manipulation of one or more independent variables to observe their effects on a dependent variable

Example: Measuring the degradation rate of a specific photovoltaic system under known circumstances

Statistical parameters such as the variance are difficult to determine and are not always given

Observational research

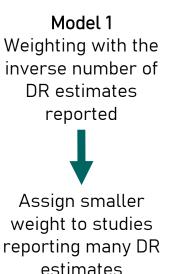
Observing the relationship between two or more variables without manipulating them

Example: Regression analysis of the relationship between shareholder activism and the shareholder return

Statistical parameter such as the variance are frequently addressed and given

Meta-regression analysis

Meta-regression analysis after Stanley and Jarrell 1989


Application in experimental research

$$DR_{ij} = \beta_0 + \sum_{k=1}^{K} \gamma_{ij} Z_{ijk} + \varepsilon_{ij}, \, \varepsilon_{ij} \sim N\left(0; \sigma_{DR_{ij}}^2\right)$$

 $\begin{array}{ll} DR_{ij} & \mbox{annual DR of the ith estimate} \\ & \mbox{taken from the jth study} \\ \gamma_{ij} & \mbox{meta-regression coefficients} \\ Z_{ijk} & \mbox{set of k moderator variables} \\ \varepsilon_{ij} & \mbox{error term} \end{array}$

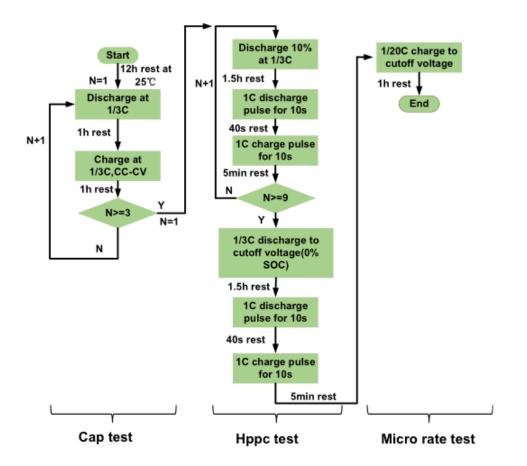
No standard error of the DR estimate

Weighted least squares regression (WLS) to adress the heteroscedasticity observed in the residuals

Model 2 Weighting with constructed reliability metic

Assign larger weight to more

reliable DR


estimates

Clustered standard errors

Clustering at study level to account for within-study dependencies and avoid misleadingly precise estimates

Meta-analysis

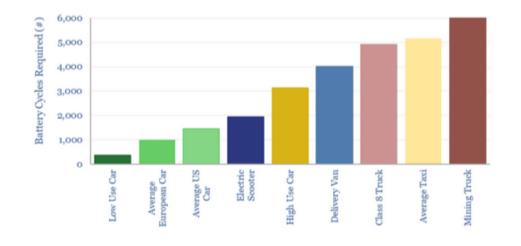
Methodological differences

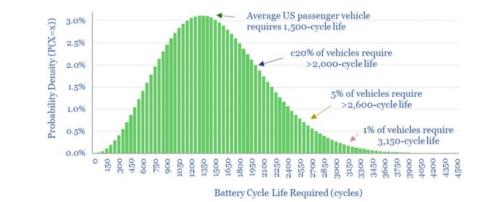
Reference Performance Test (Wu 2020)

Regression

Moderator variable	Description
Publication characteristics	
PUBLICATION: YEAR	Natural logarithm of publication year of the study – 2006
PUBLICATION: EUROPE ¹	=1, if the country suporting the study is an European country
PUBLICATION: NORTH AMERICA ¹	=1, if the country supporting the study is a North American country
PUBLICATION: ASIA ¹	=1, if the country supporting the study is an Asian country
PUBLICATION: CITS	Natural logarithm of the annual citations of the study
PUBLICATION: #AUTHOR	Natural logarithm of the author number
Battery differences	
BATTERY: NOMINAL CAPACITY	Natural logarithm of the nominal capacity
BATTERY: CATHODE CO ²	=1, if the cathode material contains cobalt
BATTERY: CATHODE FE ²	=1, if the cathode material contains iron
BATTERY: CATHODE MO ²	=1, if the cathode material contains manganese oxide
Measurement	
characteristics	
MEASUREMENT: RPT	=1, if the capacity was determined by reference performance test
MEASUREMENT: KNOWN DEFECT	=1, if the study reports any known defect, 0 otherwise

Moderator variable	Description
Experimental differences	
EXPERIMENT: CHARGE RATE	Natural logarithm of the charge rate
EXPERIMENT: DISCHARGE RATE	Natural logarithm of the discharge rate
EXPERIMENT: CUTOFF CHARGE	Natural logarithm of cutoff charge ampere
AMPERE	
EXPERIMENT: DOD	Natural logarithm of the depth of discharge
EXPERIMENT: CYCLED TILL EOL	=1, if the battery has been cycled to at least 80% of its capacity
EXPERIMENT: CHARGE CUTOFF	Natural logarithm of charge cutoff voltage
VOLTAGE	
EXPERIMENT: OTHER CYCLE	=1, if special cycle protocols (e.g. UDDS or DST) were used
PROTOCOLS ⁴	
EXPERIMENT: CCCV ⁴	=1, if constant charging constant voltage protocol was used
EXPERIMENT: REST TIME	=1, if there is a rest time between the charging and discharging
	phases
EXPERIMENT: TEMP LOW ³	=1, if the temperature is between -20°C and 10°C
EXPERIMENT: TEMP HIGH ³	=1, if the temperature is between 40°C and 70°C
Control variables	
CONTROL VARIABLE:	=1, if the degradation curve has a decelerating shape
DECELERATED CURVE ⁵	
CONTROL VARIABLE:	=1, if the degradation curve has a accelerated shape
ACCELERATED CURVE ⁵	

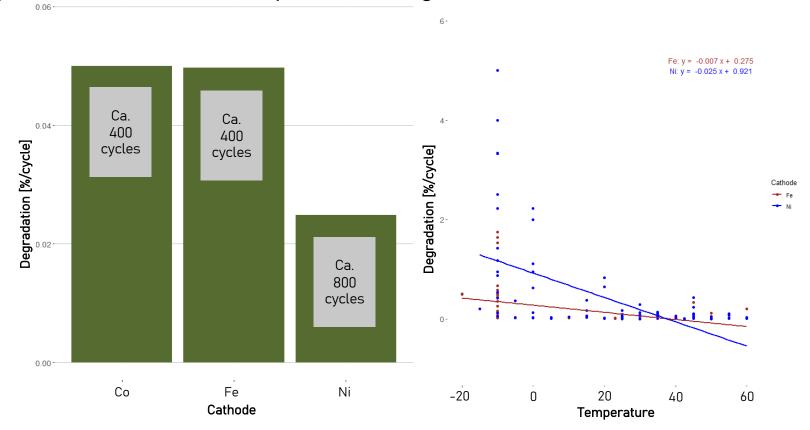

Base groups of the dummy variables: ¹ none, ² Cathode Nickel, ³ Temperature moderate, ⁴ CC Charge/Discharge, ⁵ linear curve


Quality Indicator

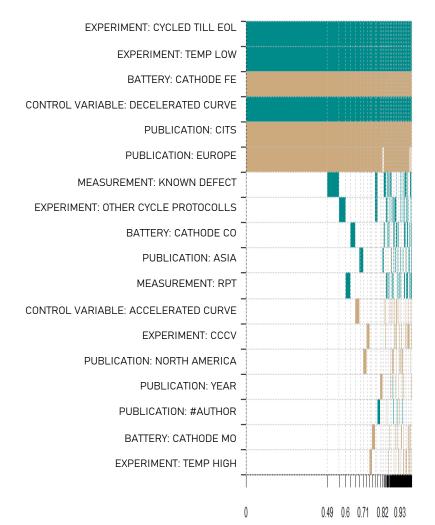
Penalizing scheme

Quality indicaot	Penalty point
cutoff charge voltage of experiment not reported	2
cutoff discharge voltage of experiment not reported	2
Cycle equipment not reported	2
temperature control device not used	2
Reference performance test not used	2
SOC (min) not reported	2
SOC (max) not reported	2
DOD not reported	2
Anode not reported	1
charge cutoff voltage provided by manufacturer not reported	1
discharge cutoff voltage provided by manufacturer reported	1
Battery size not reported	1
Σ	20

Descriptives

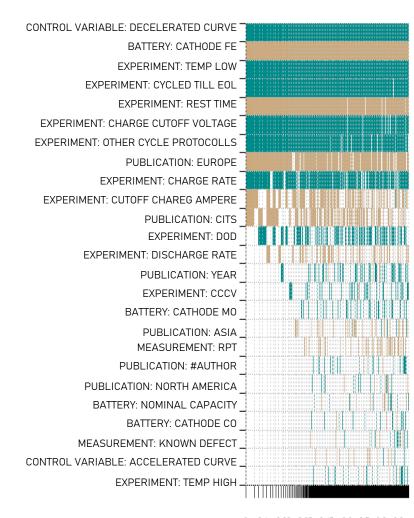

https://thundersaidenergy.com/downl oads/electric-vehicle-battery-life/

26 10/13/24 | Universität Augsburg


wir

Backup Folie

Warum LFP höhere DegRate hat wenn man es alleine betrachtet aber unter Berücksichitgung der temperatur nicht, da sehr Temperatur anfällig


BMA + Regression – all Study IDs

49 Studies/355 DegRates	WLS MRA		BMA
	Model 1	Model 2	PIP
Moderator variable			
INTERCEPT	-0.034	-0.470	1
Publication characteristics			
PUBLICATION: CITS	-2.756**	-2.711*	0.993
PUBLICATION: EUROPE ¹	-0.325**	-0.853***	0.979
PUBLICATION: ASIA ¹	-0.045	-0.120	0.065
PUBLICATION: NORTH AMERICA ¹	-0.032	-0.456	0.045
PUBLICATION: #AUTHOR	-0.001	0.025	0.038
PUBLICATION: YEAR	0.005	0.019	0.039
Battery differences			
BATTERY: CATHODE FE ²	-0.397**	-0.928***	1
BATTERY: CATHODE CO ²	0.046	0.094	0.068
BATTERY: CATHODE MO ²	-0.094	0.169	0.037
Experimental differences			
EXPERIMENT: CYCLED TILL EOL	0.373***	0.714***	1
EXPERIMENT: TEMP LOW ³	1.044***	1.365***	1
EXPERIMENT: OTHER CYCLE PROTOCOLLS ⁴	0.250	0.423**	0.099
EXPERIMENT: CCCV ⁴	-0.004	-0.017	0.046
EXPERIMENT: TEMP HIGH ³	0.028	-0.049	0.037
Measurement characteristics			
MEASUREMENT: KNOWN DEFECT	0.128	0.051	0.145
MEASUREMENT: RPT	-0.003	0.142	0.064
Control variables			
CONTROL VARIABLE: DECELERATED CURVE ⁵	0.275**	0.723**	1
CONTROL VARIABLE: ACCELERATED CURVE ⁵	-0.094	-0.092	0.056
R^2 (adjusted)	0.34 (0.30)	0.55 (0.53)	

wik

BMA + Regression – alle moderators

33 Studies/ 240 DegRates	WLS MRA		BMA
	Model 1	Model 2	PIP
Moderator variable		•	
INTERCEPT	-1.710*	-2.259***	1
Publication characteristics			
PUBLICATION: YEAR	0.084**	0.096*	0.158
PUBLICATION: EUROPE	-0.341	-0.537***	0.903
PUBLICATION: CITS	-0.851	-0.361	0.514
PUBLICATION: NORTH AMERICA	0.071	0.360	0.067
PUBLICATION: ASIA	-0.131	0.043	0.116
PUBLICATION: #AUTHOR	-0.005	0.019	0.070
Battery differences			
BATTERY: NOMINAL CAPACITY	-0.008*	-0.006	0.065
BATTERY: CATHODE CO	0.060	0.042	0.064
BATTERY: CATHODE FE	-0.451	-1.171***	1
BATTERY: CATHODE MO	0.892**	1.254**	0.123
Experimental differences			
EXPERIMENT: CHARGE RATE	0.072	0.408	0.865
EXPERIMENT: DISCHARGE RATE	-0.013	-0.119	0.250
EXPERIMENT: CCCV	-0.157	0.002	0.129
EXPERIMENT: CYCLED TILL EOL	0.287*	0.508***	0.997
EXPERIMENT: CHARGE CUTOFF VOLTAGE	0.063**	0.130***	0.985
EXPERIMENT: CUTOFF CHAREG AMPERE	-0.109	-0.246	0.514
EXPERIMENT: DOD	0.184	0.134	0.426
EXPERIMENT: OTHER CYCLE PROTOCOLLS	0.442	1.814***	0.961
EXPERIMENT: REST TIME	-0.217*	-0.563**	0.988
EXPERIMENT: TEMP LOW	1.198***	2.110***	1
EXPERIMENT: TEMP HIGH	-0.025	-0.032	0.054
Measurement characteristics			
MEASUREMENT: RPT	-0.104	-0.068	0.105
MEASUREMENT: KNOWN DEFECT	-0.009	-0.204	0.059
Control variables			
CONTROL VARIABLE: DECELERATED CURVE	0.226	0.828**	1
CONTROL VARIABLE: ACCELERATED CURVE	0.065	0.031	0.056
R^2 (adjusted)	0.40 (0.33)	0.73 (0.70)	

wik

29 10/13/24

The most important contributions:

M. Stanley Whittingham: He developed the first concept of a rechargeable lithium battery 1970 with a lithium metal anode and a titanium disulphide cathode.

John B. Goodenough: He discovered the high-performance cathode material lithium cobalt oxide (LiCoO₂) in 1980, which increased the voltage and energy density of the battery.

Akira Yoshino: He developed the first safe and commercially viable lithium-ion battery by using graphite as the anode material in 1985 based on Goodenougs LCO cathode material

SONY: First commercial LIB in 1990 (LCO + Graphite) based on Yoshinos work